Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Normah Awang, Ibrahim Baba, M. Sukeri M. Yusof and Bohari M. Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.025$
$w R$ factor $=0.070$
Data-to-parameter ratio $=20.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

(N-Cyclohexyl- N -methyldithiocarbamato)triphenyltin(IV)

The title compound, $\mathrm{Ph}_{3} \mathrm{Sn}\left[\mathrm{S}_{2} \mathrm{CN}(\mathrm{Me}) \mathrm{C}_{6} \mathrm{H}_{11}\right]$, has an isobidentate ligand, with the tin coordination geometry intermediate between tetrahedral and distorted trigonal bipyramidal, owing to the presence of a long intramolecular Sn \cdots S interaction of 3.0134 (8) Å.

Comment

(Dithiocarbamato)diorganotin complexes such as bis(dimethyldithiocarbamato)dimethyltin (Kimura et al., 1972) and bis(diethyldithiocarbamato)diphenyltin (Lindley \& Carr, 1974) are known to show an expansion and distortion of their coordination geometries due to weak intramolecular $\mathrm{Sn} \cdots \mathrm{S}$ interactions. The nature of the ligands and the substituents at the tin atom also have an influence on the coordination environment in the complex.

The title compound, (I), a triorganotin system with an unsymmetrical ligand, is isostructural to (N-butyl-N-methyldithiocarbamato)triphenyltin(IV), $\quad \mathrm{Ph}_{3} \mathrm{Sn}\left[\mathrm{S}_{2} \mathrm{CN}\right.$ $\left.\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)\right]$ (Kana et al., 2001), and (diethyldithiocarbamato)triphenyltin(IV) (Lindley \& Carr, 1974). The isobidentate nature of the chelation, with $\mathrm{Sn} 1-\mathrm{S} 1=$ 2.4558 (6) \AA and a weak intramolecular $\mathrm{Sn} 1 \cdots$ S2 interaction of 3.0134 (8) \AA [2.4631 (9) and 3.084 (1) \AA respectively in $\mathrm{Ph}_{3} \mathrm{Sn}\left(\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{4} \mathrm{H}_{9}\right)$], leads to a coordination geometry intermediate between tetrahedral and distorted trigonal bipyramidal. The angles $\mathrm{C} 6-\mathrm{Sn} 1-\mathrm{S} 1, \mathrm{C} 6-\mathrm{Sn} 1-\mathrm{C} 18$ and $\mathrm{C} 18-\mathrm{Sn} 1-\mathrm{S} 1 \quad[116.14$ (5), 116.63 (8) and $116.28(6) \AA$, respectively] are close to 120°, as expected at equatorial positions, and the $\mathrm{C} 12-\mathrm{Sn} 1-\mathrm{S} 2$ angle for the axial positions is $158.43(6)^{\circ}$. Other bond parameters of the dithiocarbamate ligand are normal and similar to those in bis(N-cyclohexyl- N methyldithiocarbamato)dimethyltin(IV), which has a severely distorted octahedral geometry (Awang et al., 2003.)

Experimental

The title compound was synthesized by the addition of carbon disulfide, $\mathrm{CS}_{2}(1.8 \mathrm{ml}, 0.03 \mathrm{~mol})$, to an ethanolic solution of N methylcyclohexylamine ($4 \mathrm{ml}, 0.03 \mathrm{~mol}$) with stirring for one hour at 269 K. Triphenyltin(IV) chloride ($11.6 \mathrm{~g}, 0.03 \mathrm{~mol}$) solution was then added and the solution mixture was stirred for another hour. The

Received 28 May 2003
Accepted 2 June 2003
Online 10 June 2003
resulting white precipitate was filtered, washed with cold ethanol and dried in vacuo. Crystals suitable for X-ray analysis were obtained by recrystallization from a $1: 1$ mixture of ethanol and chloroform.

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NS}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]$	$Z=2$
$M_{r}=538.31$	$D_{x}=1.438 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=9.7951(17) \AA$	Cell parameters from 6115
$b=11.342(2) \AA$	reflections
$c=11.952(2) \AA$	$\theta=1.8-27.6^{\circ}$
$\alpha=75.037(3)^{\circ}$	$\mu=1.21 \mathrm{~mm}^{-1}$
$\beta=75.962(3)^{\circ}$	$T=273(2) \mathrm{K}$
$\gamma=89.058(3)^{\circ}$	Block, white
$V=1242.9(4) \AA^{\circ}$	$0.53 \times 0.42 \times 0.26 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan $S A D A B S$ (Sheldrick, 1996) $T_{\text {min }}=0.566, T_{\text {max }}=0.744$
15537 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.070$
$S=1.06$
5658 reflections
271 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

Sn1-S1	$2.4558(6)$	$\mathrm{S} 1-\mathrm{C} 19$	$1.753(2)$
$\mathrm{Sn} 1-\mathrm{S} 2$	$3.0134(8)$	$\mathrm{S} 2-\mathrm{C} 19$	$1.680(2)$
$\mathrm{Sn} 1-\mathrm{C} 6$	$2.136(2)$	$\mathrm{N} 1-\mathrm{C} 19$	$1.317(3)$
$\mathrm{Sn} 1-\mathrm{C} 12$	$2.155(2)$	$\mathrm{N} 1-\mathrm{C} 20$	$1.457(3)$
$\mathrm{Sn} 1-\mathrm{C} 18$	$2.125(2)$	$\mathrm{N} 1-\mathrm{C} 21$	$1.482(3)$
			$106.24(8)$
$\mathrm{C} 6-\mathrm{Sn} 1-\mathrm{S} 1$	$116.14(5)$	$\mathrm{C} 18-\mathrm{Sn} 1-\mathrm{C} 12$	$102.95(8)$
$\mathrm{C} 18-\mathrm{Sn} 1-\mathrm{C} 6$	$116.63(8)$	$\mathrm{C} 6-\mathrm{Sn} 1-\mathrm{C} 12$	$94.08(6)$
$\mathrm{C} 18-\mathrm{Sn} 1-\mathrm{S} 1$	$116.28(6)$	$\mathrm{C} 12-\mathrm{Sn} 1-\mathrm{S} 1$	$96.88(7)$
$\mathrm{C} 12-\mathrm{Sn} 1-\mathrm{S} 2$	$158.43(6)$	$\mathrm{C} 19-\mathrm{S} 1-\mathrm{Sn} 1$	

After their location in a difference Fourier map, all H -atoms were included in the refinement in geometrically calculated positions, and allowed to ride on the parent C atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$. respectively.

Figure 1
Molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for research grants IRPA No.09-02-02-0048-EA144.

References

Awang, N., Baba, I., Yusof, M. S. M. \& Yamin, B. M. (2003). Acta Cryst. E59, m348-m349.
Kana, A. T., Hibbert, T. G., Mahon, M. F., Molloy, K. C., Parkin, I. P. \& Price, L. S.(2001). Polyhedron, 20, 2989-2995.

Kimura, T., Yasuko, N. \& Kakudo, N. (1972). Bull. Chem. Soc. Jpn, 45, 16491654.

Lindley, P. F. \& Carr, P. (1974). J. Mol. Struct. 4, 173-185.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

